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Emergence of on-off intermittency in systems nonlinearly coupled to a nonequilibrium bath

J. Plata
Departamento de Fı´sica Fundamental II, Universidad de La Laguna, La Laguna E38204, Tenerife, Spain

~Received 13 May 1999!

Approximate analytic solutions are presented for the dynamics of a classical oscillator nonlinearly coupled
to a nonequilibrium bath. It is shown that as a result of the combined effect of the nonlinear coupling, which
leads to nonlinear friction and multiplicative noise in the description of the reduced system, and the nonthermal
properties of the reservoir, which give a specific self-sustained character to the coarse-grained oscillator, on-off
intermittency can occur. Properties of this phenomenon, such as the universality in the length distribution of
the laminar phase and the qualitative changes caused by the presence of additive noise, can be traced back to
characteristics of the starting microscopic model.@S1063-651X~99!01411-7#

PACS number~s!: 05.45.2a, 05.40.Ca, 05.70.Ln
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I. INTRODUCTION

‘‘On-off intermittency’’ denotes an intermittent behavio
significantly different from the Pomeau-Manneville an
crisis-induced types@1#. Opposed to thestatic character of
the bifurcation parameter in those cases, in on-off interm
tency it is the stochastic or chaotic parametric variat
through the bifurcation point that gives rise to the aperio
switching between the laminar~off! phase and the burst~on!
phase. The phenomenon, which can be identified by spe
properties such as the universal power-law distribution
the laminar phase and the particular dependence of the a
age length of this phase with thecoupling parameter, has
been reported to appear in different systems@2–6#. In this
paper we present an analytical study of the emergenc
on-off intermittency in the coarse-grained dynamics of s
tems nonlinearly coupled to a nonequilibrium reservoir. T
interest in having a derivation from a microscopic model o
self-consistently reduced description of this effect is cle
From a fundamental point of view, it can establish a conn
tion between the deterministic or stochastic phenomenol
cal equations and the underlying Hamiltonian dynami
consequently, a physical basis for some of the mathema
models can be found, and the fundamental origin of som
the mechanisms proposed as responsible for the effect ca
traced. In more practical terms, the understanding of
emergent character of the phenomenon can help to ide
diverse contexts in which it can be relevant.

The outline of the paper is as follows. In Sec. II, w
present a ‘‘microscopic’’ model for the study of on-off inte
mittency, and, through a coarse-graining process, deriv
reduced description of it in terms of a stochastic system
Sec. III, analytical solutions for the emergent dynamics
obtained applying the averaging methods of Bogoliub
Krylov, and Stratonovich. Subsequently, the signatures
the intermittent behavior are related to the characteristic
the initial Hamiltonian system. The subject of Sec. IV is t
study, in the same framework, of the role of additive noise
altering some of the properties of the effect; our results
compared with the ones corresponding to standard mo
for ‘‘noisy’’ on-off intermittency. Finally, in Sec. V some
conclusions are summarized.
PRE 601063-651X/99/60~5!/5402~5!/$15.00
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II. THE MODEL

Our starting point is the microscopic model proposed
Ref. @7# to study nonexponential decay of correlation fun
tions. Specifically, we consider the classical dynamics o
complex system which consists of a particular singled o
linear or nonlinear, mode (q,p), and a set of linear mode
$(Qk ,Pk)%. These subsystems are coupled, nonlinearly iq
@through the functionV(q)# and linearly inQk ; additionally,
the mode (q,p) is bilinearly coupled to a thermal reservo
of harmonic oscillatorsB. The Hamilton function reads

H5
1

2
p21U~q!1

1

2 (
k

~Pk
21Vk

2Qk
2!2V~q!(

k
Qk1HB

1H int~B,q!. ~1!

Assuming the weak-coupling limit for all the interaction
an Ohmic character for the thermal bath, a Debye-type
quency density for the phonons$Qk% with a cutoffVc much
larger than any typical frequency of the modeq, and follow-
ing standard techniques@8#, it is shown that the coarse
grained dynamics for the modeq is described by@7#

q̈52G~q!p2Ũ8~q!1jb~ t !1V8~q!jp~ t !, ~2!

whereG(q)5gb1gp@V8(q)#2 gives the nonlinearity of the
friction term (gb andgp are the dissipation coefficients du
to the thermal bath and the phonons$Qk%, respectively!;
Ũ(q)5U(q)2(Vc /p)gpV2(q) is the bare potential
dressedby the modes$Qk% @thedressingcaused by the ther
mal bath is absorbed inU(q)#; jb(t) is Gaussian white
noise, i.e.,̂ jb(t)&50 and^jb(t)jb(t8)&52gbkBTd(t2t8);
and jp(t) is zero-mean Gaussian noise~a random distribu-
tion for the initial phases of the phonons is assumed! with a
spectral density@7#

S@jp ;v#52E
2`

`

dt^jp~ t !jp~ t1t!&eivt58gpu~v!,

~3!

u(v) being the energy density of the nonequilibrium sta
assumed for the modes$Qk%.

We emphasize two main points in this picture: first, t
coarse-graining performed in our starting Hamiltonian mo
5402 © 1999 The American Physical Society
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has led to a reduced bidimensional system with nonlin
friction and both additive and multiplicative noise terms; a
second, the spectral properties ofjp(t) are determined by the
state of the phonons.

III. THE AVERAGING METHOD

Now, let us see how our model system, which was stud
in Ref. @7# in the overdamped limit, can be solved analy
cally in the underdamped case under certain restrictio
First, we consider that the potentialŨ(q) corresponds to a
harmonic oscillator perturbed by nonlinear terms@for sim-
plicity we assume that the nonlinear part comes only fr
the dressing, thereforeU(q)5(1/2)v0

2q2#. Second, if the
friction term and the fluctuational forces can also be cons
ered as a perturbation to the harmonic potential, we can
ply the Bogoliubov-Krylov methods@9# to average the sys
tem @10#. In this sense, we choose as definitions for
amplitude A and phase c5v0t1w the equations q
5A cos(v0t1w) and p52v0A sin(v0t1w). With these
changes Eq.~2! is converted into a system of two equatio
in standard formin which the averaging of the determinist
terms overt052p/v0 leads to

Ȧ52
gb

2
A2

a2gp

8
A32

1

v0
jb~ t !sin~v0t1w!

2
a

2v0
Ajp~ t !sin~2v0t12w!,

~4!
ẇ52

3a2gpVc

8pv0
A22

1

v0

1

A
jb~ t !cos~v0t1w!

2
a

2v0
jp~ t !@11cos~2v0t12w!#,

where we have taken for the nonlinear couplingV(q)
5(1/2)aq2. The stochastic terms can also be average
they have sufficiently small correlation times. This is t
case ofjb(t), and also ofjp(t) if the phonons$Qk% are in a
state with a broadband spectral density. When these co
tions are met, we can, following Ref.@10#, approximate each
of the noise terms of the previous equations by the sum o
double, statistical, and, overt052p/v0, average, and a
zero-mean Gaussian white random force. In this way
have

jb~ t !sin~v0t1w!5^jb~ t !sin~v0t1w!&1zb,1~ t !, ~5!

where the bar indicates time averaging and the ang
brackets mean averaging over the statistical ensemble. U
similar expressions for the other stochastic terms, it is sho
that in first order the coarse-grained system is described
the Stratonovich equations

Ȧ5S 2
gb

2
1

a2gpu~2v0!

2v0
2 DA2

a2gp

8
A31

gbkBT

2v0
2

1

A

2
1

v0
zb,1~ t !2

a

2v0
Azp,1~ t !, ~6!

ẇ52
3a2gpVc

8pv0
A21m2

1

v0

1

A
zb,2~ t !2

a

2v0
zp,2~ t !,
r

d

s.

-
p-

e
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di-

ts

e

ar
ing
n

by

wherezb,i(t) and zp,i(t) ( i 51,2) are zero-mean Gaussia
white-noise terms, i.e.,̂ zb,i(t)zb, j (t8)&5d i , jKb,id(t2t8)
and ^zp,i(t)zp, j (t8)&5d i , jKp,id(t2t8) with Kb,15Kb,2
5gbkBT, Kp,152gpu(2v0), and Kp,254gp@u(0)
1(1/2)u(2v0)#; and the shift of the frequency due to th
colored noise is

m5
a2

4v0
2E

2`

0

dt^jp~0!jp~t!&sin~2v0t!.

For T50 we recognize in the equation forA the functional
form of one of the stochastic models used to account
on-off intermittency@3,5,6#. As we can give analytic, both
stationary and time-dependent, solutions for this equat
we can relate the signatures of the phenomenon with
properties of our starting Hamiltonian system. This is t
subject of the rest of this section. The effects of a nonz
temperature will be studied in Sec. IV.

A. Stationary solutions

In theT50 case, the stationary probability density for th
amplitude is given by@10–13#

WSS~A!5H 2Ln

G~n!
A2n21e2LA2

for n.0

d~A! for n<0,

~7!

with n512gbv0
2/@a2gpu(2v0)# and L5v0

2/
@4u(2v0)#, and it has a variance ^A2&2^A&2

5@n2G2(n11/2)/G2(n)#/L.
Let us discuss the different qualitative behaviors that,

pending onn, exist in the system@10#. In the range 0,n
,1/2, the probability density is monotonic and the mo
probableA is zero: no ‘‘predominant’’ amplitude exists in
this regime of ‘‘undeveloped oscillations.’’ For 1/2,n,1,
WSS(A) has the maximum atAm5@(2n21)/(2L)#1/2; val-
ues of A near the origin are still quite probable, howeve
Finally, in the region of ‘‘fully developed oscillations,’’n
.1, the system remains mainly around a ‘‘limit cycle.’’
can be advanced that it is in the first regime that intermitt
behavior can occur; moreover, it can be rigorously sho
that for 0,n!1, the system exhibits properties specific
on-off intermittency: a power-law densityWSS(A);A2n21

for small A is obtained from Eq.~7!, and a23/2 power
function for the length distribution of the laminar phase
the onset of the oscillations is found by mapping the proc
to a random walk@6#. In our model, the maximum value ofn
is 1, and it is reached whenq is disconnected from the ther
mal bath (gb50). In that case,WSS(A) equals a Rayleigh
distribution@10# and hence the system never enters the in
mittency domain. A Rayleigh distribution is equally obtaine
if gp50 ~the modeq coupled only to the thermal bath!. On
the contrary, forgbÞ0 and gpÞ0, the reduced system
which is always outside the ‘‘fully developed oscillations
regime, shows intermittent behavior if the energy distrib
tion u(2v0) is slightly larger than the threshol
v0

2gb /(a2gp). In this regime, smaller values ofn result first
in an increase of themean laminar phase, which goes to
infinity at the threshold, and finally in the quenching of th
burst phase; additionally there is also an increase ofL and
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5404 PRE 60J. PLATA
therefore a reduction of the effective width of the density.
Fig. 1, whereWSS(A) is depicted for different values ofn,
the dependence of the qualitative behavior of the system
the preparation of the phonons is clearly reflected. In c
trast, in Fig. 2, where we plotWSS(A) for gb50 at different
values of the energy density, it can be seen how the sys
which in this case is thermodynamically closed in an eff
tive way, is always on the border of the ‘‘limit cycle’’ re
gime.

The role played byu(2v0) in fixing the parameters char
acteristic of the dynamics is rooted in the form chosen
V(q). A study with coupling functionsV(q);qr (r.2)
can be carried out, the main difference with the previo
description being the presence of parametric noise linke
nonlinear functions in the equation forA. Given that the
particular formAzp,1(t) of the stochastic term is determina
in the appearance of the on-off signatures, a qualitativ
different behavior is therefore expected. We also point
that if nonlinear interaction between the phonons and
coupling of these to the thermal bath were considered, a
was done with a heuristic approach in Ref.@7#, the resulting
spectral changes in the colored noise could alter the
ciency of the initial state to generate the oscillations.

FIG. 1. Stationary probability densityWSS(A) for T50, gb

50.01, and u(2v0)50.3 ~a!, u(2v0)50.2 ~b!, and u(2v0)
50.143~c!. The rest of the parameters of the system aregp50.1,
v051, a51, and are the same in all the figures.
n
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B. Time-dependent solutions

Time-dependent solutions of the Fokker-Planck equat
for A can be obtained using forW(A,t) an eigenfunction
expansion with discrete and continuum branches@11#. For
the off state the analysis is simpler: we can neglect the n
linear terms and perform a derivation of the length distrib
tion through a first-passage time study. In effect, with t
approximation the time evolution of the amplitude is co
verted, through a proper change of variable, into a Wie
process, and an analytical expression for the time-depen
probability density is readily obtained; consequently, t
first-passage time study can be straightforwardly perform
In this way we have found the two essential features of t
phase: the power-law function with an exponential t
P(s)5s23/2exp(2s/s* ), where s* ;n22, and the depen-
dence of the mean duration with the coupling strengths̄
;n21.

Approximate correlation functions can also be deriv
analytically: whereas forn.2 the dominance of the discret
part of the spectrum leads to exponential decay, in
threshold region0<n<2, which includes the regime in
which intermittency sets in, the correlation function is com
pletely determined by the continuous branch and, in
asymptotic limit and for larget, is given by@11#

FIG. 2. Stationary probability densityWSS(A) for T50, gb

50 (n51), and u(2v0)50.45 ~a!, u(2v0)50.236 ~b!, and
u(2v0)50.111~c!.
lim
t→`

^A~ t1t!A~ t !&2^A~ t !&2.5
G4S n1

1

2D
pn!G~2n!

e22n2QtF S pQt

2 D 21/2

1O~t23/2!G , n52n

G2S 2
n

2DG4S n11

2 D
8G~n!

e2
n2Qt

2 F S pQt

2 D 23/2

1O~t25/2!G , 0,n,2,
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whereQ5a2gpu(2v0)/(2v0
2). Hence, the system relaxes

a nonexponential way. The spectral density of the bidim
sional system is determined by the time dependence of
correlation function and also by the additional fluctuations
the phase; in this sense we study now the role of the n
terms in the equation forw. In the considered case of zer
temperature, the mean frequency is obtained performin
statistical average in the expression forẇ in Eq. ~6! and
taking into account the definition ofc. In this way we have

^ċ&5v02
3a2gpVc

8pv0

n

L
1m, ~8!

where the second term on the right-hand side has its origi
the nonlinear character of the potential@in our first-order
perturbative treatment this is the only effect of nonlinearit
in Ũ(q)#; the third term is due to the finite correlation tim
of the multiplicative noise of Eq.~2!. Obviously, these terms
must be small compared withv0 for the applied methodol-
ogy @coarse graining of Eq.~2!# to be valid. In the particular
case in which the initial state of the phonons gives rise t
broadband noisejp(t) whose spectral density, centered
2v0, with a sufficiently small correlation time 1/l, and a
strengths, is given by

S@jp ;v#58gpu~v!

54ls2
v21~2v0!21l2

@v22~2v0!22l2#214l2v2 , ~9!

the additional shiftm can be explicitly written as

m52
a2s2

2v0~l2116v0
2!

,0. ~10!

The relevance that these shifts and the additive nois
the dynamics of the phase can have in the spectral chara
istics of the whole process was qualitatively discussed

FIG. 3. Stationary probability densityWSS(A) for a nonzero
temperature (kBT50.02), gb50.01, and u(2v0)50.3 ~a!,
u(2v0)50.2 ~b!, andu(2v0)50.143~c!.
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Refs. @13# and @14#. It was shown how these features ca
explain the widening of the output signal and the reduct
of the peak frequency, found for increasing noise intensi
in the spectra of systems similar to our reduced oscilla
@12#. Given the more complex character of the pres
model, we cannot derive a compact expression for its sp
trum. Nevertheless, the previous analysis gives us so
clues to conjecture: first, the nonexponential decay of
correlation function for the amplitude in the regime in whic
intermittency appears must play the key role in determin
the spectral features of the system; and second, the dyna
of the angular variable can be responsible for nontriv
changes in the spectra.

IV. THE EFFECT OF ADDITIVE NOISE ON ON-OFF
INTERMITTENCY

Let us analyze how robust the previous description
against small increments of the temperature. ForTÞ0, the
equation forA presents two additional terms: the additiv
noise (1/v0)zb,1 , typical of the standard models for nois
on-off intermittency @15,16#, and the deterministic force
(gbkT)/(2v0

2)A21, absent in those models and specific
the present self-consistently reduced derivation. We can
ferentiate the effects of each of these terms: the addi
noise makes the singularity at the origin disappear, alter
the onset of intermittency and some of its signatures@11,15#;
the deterministicterm gives rise to a vanishing probabilit
density at the origin and to a shift of the most probab
amplitude to a temperature-dependent value. These eff
increase withT and can be relevant inside the threshold
gion. The different functional form of the probability distr
bution, which now becomes

WSS~A!5NS gbkBT1
a2gpu~2v0!

2
A2D n21/21bL2h

3A2he2LA2
, ~11!

FIG. 4. Same as Fig. 3 forh50.
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where N is a normalization constant, h
5gbkBT/@a2gpu(2v0)#, and b52h, accounts for these
considerations. In Figs. 3 and 4 we depict, respectively,
probability density and its counterpart in a typical model
noisy on-off intermittency obtained by makingh50 in Eq.
~11!. For a sufficiently small value ofT, the presence of the
deterministicterm hardly introduces any relevant change
is only in a very small region near the origin that the dyna
ics is altered. Therefore, for smallT, we can consider that th
laminar phase includes this region, and consequently we
still describe the switching as intermittent behavior.

V. CONCLUDING REMARKS

In conclusion, we have found that on-off intermitten
can appear in a complex system coupled to a thermal re
voir as a result of the existence of a nonequilibrium state
‘‘hidden modes’’ nonlinearly coupled to the mode observe
Since the parameters of the reduced equations have a
traced microscopic origin, some physical implications can
extracted from the properties of the emergent dynam
First, thecoupling parametern, on which the specific prop
erties of the effect depend and which in standard mod
gy

l

is
r

t
-

an

er-
f
.
ell
e
s.

ls

@2–6# corresponds to the coupling strength that incorpora
the chaotic or stochastic signal into theslavedsystem, is in
our model a measure of the difference between the assu
mechanism of dissipation and the one existent in a ther
dynamically closed system. The nonlinear coupling to
phonons gives a self-sustained character to the reduced
cillator, whereas the dissipation to the thermal bath result
a nontrivial nÞ1. Second, the threshold character is link
to the limited efficiency of the environment to sustain osc
lations in the relaxation process. Third, as the signatures
determined by the linear terms~both deterministic and sto
chastic! present in the equation for the amplitude, the ro
played by the functional form ofV(q) in the appearance o
the phenomenon is crucial. The possible relevance of
model in different contexts is supported by the frequent pr
ence in real physical problems of effective nonlinear co
plings and perturbations to thermal states.

ACKNOWLEDGMENT

This work was supported by a grant from Direccion Ge
eral de Investigacion Cientifica y Tecnica of Spain~Project
No. PB97-1482!.
e

@1# For a characterization of on-off intermittency, see J.F. Hea
N. Platt, and S.M. Hammel, Phys. Rev. E49, 1140~1994!, and
references therein.

@2# N. Platt, E.A. Spiegel, and C. Tresser, Phys. Rev. Lett.70, 279
~1993!.

@3# H. Fujisaka and T. Yamada, Prog. Theor. Phys.75, 1087
~1986!.

@4# E. Ott and J.C. Sommerer, Phys. Lett. A188, 39 ~1994!.
@5# A.S. Pikovsky and P. Grassberger, J. Phys. A24, 4587~1991!.
@6# H.L. Yang and E.J. Ding, Phys. Rev. E54, 1361~1996!.
@7# M.M. Millonas and C. Ray, Phys. Rev. Lett.75, 1110~1995!.
@8# K. Lindenberg and B. J. West,The Nonequilibrium Statistica

Mechanics of Open and Closed Systems~VCH Publisher, New
York, 1990!, and references therein.
, @9# N. N. Bogoliubov and Y. A. Mitropolsky,Asymptotic Methods
in the Theory of Non-Linear Oscillations~Gordon and Breach,
New York, 1961!.

@10# R. L. Stratonovich,Topics in the Theory of Random Nois
~Gordon and Breach, New York, 1963!.

@11# A. Schenzle and H. Brand, Phys. Rev. A20, 1628~1979!; R.
Graham and A. Schenzle,ibid. 25, 1731~1982!.

@12# P.S. Landa and A.A. Zaikin, Phys. Rev. E54, 3535 ~1996!;
Chaos Solitons Fractals9, 157 ~1998!.

@13# J. Plata, Phys. Rev. E59, 2439~1999!.
@14# J. Plata, Phys. Rev. E56, 6516~1997!.
@15# N. Platt, S.M. Hammel, and J.F. Heagy, Phys. Rev. Lett.72,

3498 ~1994!.
@16# A. Cenys and H. Lustfeld, J. Phys. A29, 11 ~1996!.


