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Emergence of on-off intermittency in systems nonlinearly coupled to a nonequilibrium bath

J. Plata
Departamento de Bica Fundamental I, Universidad de La Laguna, La Laguna E38204, Tenerife, Spain
(Received 13 May 1999

Approximate analytic solutions are presented for the dynamics of a classical oscillator nonlinearly coupled
to a nonequilibrium bath. It is shown that as a result of the combined effect of the nonlinear coupling, which
leads to nonlinear friction and multiplicative noise in the description of the reduced system, and the nonthermal
properties of the reservoir, which give a specific self-sustained character to the coarse-grained oscillator, on-off
intermittency can occur. Properties of this phenomenon, such as the universality in the length distribution of
the laminar phase and the qualitative changes caused by the presence of additive noise, can be traced back to
characteristics of the starting microscopic mod&l1063-651X99)01411-7

PACS numbd(s): 05.45—a, 05.40.Ca, 05.70.Ln

I. INTRODUCTION Il. THE MODEL

Our starting point is the microscopic model proposed in
Ref. [7] to study nonexponential decay of correlation func-

sigqifipantly different from the PomeauTManneviIIe and tions. Specifically, we consider the classical dynamics of a
crisis-induced typegl]. Opposed to thestatic character of oo mnjex system which consists of a particular singled out,

the bifurcation parameter in those cases, in on-off intermityinear or nonlinear modeq(p), and a set of linear modes

tency it is the stochastic or chaotic parametric variation;(g, p,)l. These subsystems are coupled, nonlinearly in
thrgug_h the bifurcation poipt that gives rise to the aperiodiqthrough the function/(q)] and linearly inQ, ; additionally,
switching between the lamingoff) phase and the burén)  the mode ¢,p) is bilinearly coupled to a thermal reservoir
phase. The phenomenon, which can be identified by specifigf harmonic oscillator®. The Hamilton function reads
properties such as the universal power-law distribution for 1

the laminar phase and the particular dependence of the avery — Z 2 y(q)+ = >, (P2+ 0202 —V(q)>, Q +H

age length of this phase with theupling parameterhas 2 24 TRk © e
been reported to appear in different systdi2s6]. In this +H.(B.q) )
paper we present an analytical study of the emergence of it 5,0)-

on-off intermittency in the coarse-grained dynamics of sys-  Assuming the weak-coupling limit for all the interactions,
tems non”nearly COUp|Ed toa nonequilibrium reservoir. Thean Ohmic character for the thermal bath, a Debye-type fre-
interest in having a derivation from a microscopic model of aquency density for the phonokg,} with a cutoff Q. much
self-consistently reduced description of this effect is clearlarger than any typical frequency of the mogieand follow-
From a fundamental point of view, it can establish a connecing standard technique8], it is shown that the coarse-
tion between the deterministic or stochastic phenomenologigrained dynamics for the modgis described by7]

cal equations and the underlying Hamiltonian dynamics; - ~ ,

consequently, a physical basis for some of the mathematical 9= —T(@)p=U"(a)+ &) +V' (@) é(1), @

models can be found, and the fundamental origin of some %herel’(q): yo+ 7o[V'(q)]? gives the nonlinearity of the
the mechanisms proposed as responsible for the effect can B&-tion term o ang y. are the dissipation coefficients due
traced. In more practical terms, the understanding of thg; ine thermal bath gnd the phonof@,}, respectively;
emergent character of the phenomenon can help to identifﬁ(q)zwq)—(ﬂclw) ypVZ(q) is the bare potential

div_le_Lse cotr|1_texts finﬂ:/vhich it can be ]rce::avant.l Sec. Il dressedby the modegQ,} [the dressingcaused by the ther-
€ ou“m_e of the eaper IS as 10[loWs. 1IN S€ec. 1l, We a| path is absorbed iv(q)]; & (t) is Gaussian white

present a “microscopic model for thg s:tudy of on-off inter- noise, i.e.{&(t))=0 and(&y(t)&(t'))=2ypksT(t—t'):

mittency, and, through a coarse-graining process, derive 2nd £,(1) is zero-mean Gaussian noige random distribu-

reduced description of it in terms of a stochastic system. Nion for the initial phases of the phonons is assumeith a
Sec. Ill, analytical solutions for the emergent dynamics arespectral density7]

obtained applying the averaging methods of Bogoliubov,
Krylov, and Stratonovich. Subsequently, the signatures of ) * or_

the intermittent behavior are related to the characteristics of S[gp'w]zzj_de@P(t)gP(H 7)€ =8ypu(w),

the initial Hamiltonian system. The subject of Sec. IV is the (3)
study, in the same framework, of the role of additive noise in

altering some of the properties of the effect; our results arei(w) being the energy density of the nonequilibrium state
compared with the ones corresponding to standard mode&ssumed for the mod€),}.

for “noisy” on-off intermittency. Finally, in Sec. V some We emphasize two main points in this picture: first, the
conclusions are summarized. coarse-graining performed in our starting Hamiltonian model

“On-off intermittency” denotes an intermittent behavior
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has led to a reduced bidimensional system with nonlineawhere ¢, ;(t) and ¢, (t) (i=1,2) are zero-mean Gaussian
friction and both additive and multiplicative noise terms; andwhite-noise terms, i.e.{{p(t){,(t"))=6; jKp,o(t—1")
second, the spectral propertieség{t) are determined by the and (Z,i(t)Z,;(t")) =6 ;Ky,6(t—t") with Ky =Ky,

state of the phonons. =vpkeT, Kp1=2ypu(2wp), and K,,=4y,[u(0)
+(1/2)u(2wg) |; and the shift of the frequency due to the
Il. THE AVERAGING METHOD colored noise is

2
Now, let us see how our model system, which was studied _a® (0 .

in Ref. [7] in the overdamped limit, can be solved analyti- m_4w0§f_wdT<§p(o)§p(7)>sm(2w07)'

cally in the underdamped case under certain restrictions.

First, we consider that the potentidi(q) corresponds to a For T=0 we recognize in the equation férthe functional

harmonic oscillator perturbed by nonlinear terffisr sim- form of one of the stochastic models used to account for

plicity we assume that the nonlinear part comes only fronPn-off intermittency[3,5,6]. As we can give analytic, both

the dressing thereforeU(q)=(1/2)w3q2]. Second, if the Stationary and time-dependent, solutions for this equation,

friction term and the fluctuational forces can also be considwe can relate the signatures of the phenomenon with the

ered as a perturbation to the harmonic potential, we can agroperties of our starting Hamiltonian system. This is the

ply the Bogoliubov-Krylov method§9] to average the sys- subject of the rest of this section. The effects of a nonzero

tem [10]. In this sense, we choose as definitions for thetemperature will be studied in Sec. IV.

amplitude A and phase y=wot+¢ the equationsq

=Acosott¢) and p=—woAsin(wptte). With these A. Stationary solutions

changes Eq(2) is converted into a system of two equations

in standard formin which the averaging of the deterministic

terms overry=2m/w, leads to

In the T=0 case, the stationary probability density for the
amplitude is given by10-13

2 v

. Vb a~Yp 4 1 . 2A 2v—1,-AA?
A=———A———A>——¢§(b)si t+ A e for v>0

a 8(A) for v»=0,

— 5 AG(DSIN 2wt +2¢),

@o with v=1-— ybw(z)/[azypu(ZwO)] and A= w%/
_ 3y, , 11 (4 [4u(2wy)], and it has a variance (A% —(A)2
== TwOA " oo 7 $n(1)CoS wot + ¢) =[v—T2(v+1/12)T3(v)]/A.

Let us discuss the different qualitative behaviors that, de-
a pending onv, exist in the systenj10]. In the range & v
—2—%§p(t)[1+C05(2wot+2<P)], <1/2, the probability density is monotonic and the most
probableA is zero: no “predominant” amplitude exists in
where we have taken for the nonlinear coupliMfg)  this regime of “undeveloped oscillations.” For H2»<1,
=(1/2)aq?. The stochastic terms can also be averaged i#VsdA) has the maximum ad,=[(2v—1)/(2A)]*3 val-
they have sufficiently small correlation times. This is theues of A near the origin are still quite probable, however.
case ofé(t), and also of(t) if the phonongQ,} are ina  Finally, in the region of “fully developed oscillations,’s
state with a broadband spectral density. When these condi=1, the system remains mainly around a “limit cycle.” It
tions are met, we can, following RdfL0], approximate each can be advanced that it is in the first regime that intermittent
of the noise terms of the previous equations by the sum of itbehavior can occur; moreover, it can be rigorously shown
double, statistical, and, overy=2w/w, average, and a that for 0<v<1, the system exhibits properties specific to
zero-mean Gaussian white random force. In this way weon-off intermittency: a power-law densitWsdA)~A?" "1
have for small A is obtained from Eq(7), and a—3/2 power
. - function for the length distribution of the laminar phase at
En(Dsin(wot+ @) =(&x(sin(wot + )+ {pa(t), (5 the onset of the oscillations is found by mapping the process
a random walk6]. In our model, the maximum value of
1, and it is reached whenis disconnected from the ther-
al bath ¢/,=0). In that caseWWs4A) equals a Rayleigh
istribution[10] and hence the system never enters the inter-
ittency domain. A Rayleigh distribution is equally obtained
if ¥,=0 (the modeq coupled only to the thermal bathOn

where the bar indicates time averaging and the angulatno
brackets mean averaging over the statistical ensemble. Usin
similar expressions for the other stochastic terms, it is show
that in first order the coarse-grained system is described b
the Stratonovich equations

Ao, a®ypU(2wo) A azva3+ YokgT 1 the contrary, fory,#0 and y,#0, the reduced system,
2 20)3 8 2w§ A which is always outside the “fully developed oscillations”
regime, shows intermittent behavior if the energy distribu-
B i (t)—iA (t) ©6) tion u(2wg) is slightly larger than the threshold
wo Eoa 2wy Epalt), w§yp/(a?y,). In this regime, smaller values ofresult first
3020 11 N in an increase of thenean laminar phasewhich goes to
o= T e T (1) — e £ (1), infinity at the threshold, and finally in the quenching of the
8wy wo A” 2wy P burst phase; additionally there is also an increasd a@nd
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FIG. 1. Stationary probability densitsdA) for T=0, vy, FIG. 2. Stationary probability densitWs{A) for T=0, v,
=0.01, and u(2w()=0.3 (&), U(2we)=0.2 (b), and U(2wy) =0 (r=1), and u(2wy)=0.45 (a), u(2wy)=0.236 (b), and

=0.143(c). The rest of the parameters of the system gye 0.1, u(2wg) =0.111(c).
wo=1, a=1, and are the same in all the figures.
B. Time-dependent solutions

therefore a reduction of the effective width of the density. In  Time-dependent solutions of the Fokker-Planck equation
Fig. 1, whereWsdA) is depicted for different values of,  for A can be obtained using foV(A,t) an eigenfunction
the dependence of the qualitative behavior of the system oexpansion with discrete and continuum branchEl. For
the preparation of the phonons is clearly reflected. In conthe off state the analysis is simpler: we can neglect the non-
trast, in Fig. 2, where we plaVs4 A) for y,=0 at different  linear terms and perform a derivation of the length distribu-
values of the energy density, it can be seen how the systertion through a first-passage time study. In effect, with this
which in this case is thermodynamically closed in an effec2pproximation the time evolution of the amplitude is con-
tive way, is always on the border of the “limit cycle” re- Verted, through a proper change of variable, into a Wiener
gime. process, and an analytical expression for the time-dependent
The role played byi(2w,) in fixing the parameters char- probability density is readily obtair)ed; consequently, the
acteristic of the dynamics is rooted in the form chosen forfi'st-passage time study can be straightforwardly performed.
V(q). A study with coupling functionsv(q)~g* (p>2) In this way we have found thg two gssentlal features_; of th.is
can be carried out, the main difference with the previous?hase: the power-law function with an exponential tail
description being the presence of parametric noise linked t&(S) =S >’exp(-g/s*), where s*~v~?, and the depen-

nonlinear functions in the equation f@k. Given that the dence of the mean duration with the coupling strength
particular formA{, 4(t) of the stochastic term is determinant ~ v L

in the appearance of the on-off signatures, a qualitatively Approximate correlation functions can also be derived
different behavior is therefore expected. We also point outinalytically: whereas for>2 the dominance of the discrete
that if nonlinear interaction between the phonons and thgart of the spectrum leads to exponential decay, in the
coupling of these to the thermal bath were considered, as threshold regionO<wv=<2, which includes the regime in
was done with a heuristic approach in Rgf], the resulting  which intermittency sets in, the correlation function is com-

spectral changes in the colored noise could alter the effipletely determined by the continuous branch and, in the

ciency of the initial state to generate the oscillations. asymptotic limit and for larger, is given by[11]
|
( 1
4 n+ —)
2 2 Q) 12

' am2n"Qr | = —3/2 _
. wn!F(Zn)e [( 5 +0O(7 79|, v=2n
lim (A(t+ 7)A(t)) — (A(t))2=
t—oo 2 v 4 v+1

2 2

Lof[(er
e 2

-3/2
2) +O(75’2)} 0<v<2,

L 8l (v)
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FIG. 3. Stationary probability densitWsgA) for a nonzero FIG. 4. Same as Fig. 3 fop=0.
temperature KzT=0.02), v,=0.01, and u(2wy)=0.3 (a),
U(2w0) = 0.2 (b), andu(2w,) = 0.143(c). Refs.[13] and[14]. It was shown how these features can

explain the widening of the output signal and the reduction
whereQ= a?y,u(2wo)/(2w§). Hence, the system relaxes in of the peak frequency, found for increasing noise intensities
a nonexponential way. The spectral density of the bidimenin the spectra of systems similar to our reduced oscillator
sional system is determined by the time dependence of thig2]. Given the more complex character of the present
correlation function and also by the additional fluctuations inmodel, we cannot derive a compact expression for its spec-
the phase; in this sense we study now the role of the noisgum. Nevertheless, the previous analysis gives us some
terms in the equation fop. In the considered case of zero clues to conjecture: first, the nonexponential decay of the
temperature, the mean frequency is obtained performing 8orrelation function for the amplitude in the regime in which
statistical average in the expression ferin Eq. (6) and intermittency appears must play the key role in determining
taking into account the definition af. In this way we have the spectral features of the system; and second, the dynamics

of the angular variable can be responsible for nontrivial

3a pr v

) = —_— e changes in the spectra.

where the second term on the right-hand side has its origin in |v. THE EFFECT OF ADDITIVE NOISE ON ON-OFF
the nonlinear character of the potentfah our first-order INTERMITTENCY
perturbative treatment this is the only effect of nonlinearities

in U(q)]J; the third term is due to the finite correlation time
of the multiplicative noise of Eq2). Obviously, these terms
must be small compared with for the applied methodol-
ogy [coarse graining of Eq2)] to be valid. In the particular ; 0 S
case in which the initial state of the phonons gives rise to n-off intermittency [15,16, and the deterministic force

2 71 - e
broadband nois&,(t) whose spectral density, centered on YpkT)/(2wp) A, absent in those models and specific to
2w, With a sufficiently small correlation time X/ and a the present self- c0n3|stently reduced derivation. We can dif-

strengthe, is given by ferentiate the effects of each of these terms: the additive

' noise makes the singularity at the origin disappear, altering
S ép;0]=8ypu(w) the onset of intermittency and some of its signat(ifes15;

02+ (200)2+ N2 the d_eterministicte_rm gives rise to a vanishing probability

. e >, (9 dens!ty at the origin and to a shift of the most probable

[0°=(2w0) "~ A ]"+ 4N @ amplitude to a temperature-dependent value. These effects

increase withT and can be relevant inside the threshold re-

gion. The different functional form of the probability distri-

Let us analyze how robust the previous description is
against small increments of the temperature. Fer0, the
equation forA presents two additional terms: the additive
noise (1hg){p 1, typical of the standard models for noisy

=4\ o?

the additional shifim can be explicitly written as

@202 19 bution, which now becomes
m=—————>< 10
2wo(N2+ 160)) 2y U(2wg) |7 V2HEA=7
- & Yprlewo) o
The relevance that these shifts and the additive noise in WsdA)=N| ypksT+ A

2
the dynamics of the phase can have in the spectral character-

istics of the whole process was qualitatively discussed in X A27g=AA%) (11
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where N is a normalization constant, »  [2—6] corresponds to the coupling strength that incorporates
= 7kaT/[a27pu(2wo)], and B=27%, accounts for these the chaotic or stochastic signal into tekvedsystem, is in
considerations. In Figs. 3 and 4 we depict, respectively, thisur model a measure of the difference between the assumed
probability density and its counterpart in a typical model formechanism of dissipation and the one existent in a thermo-
noisy on-off intermittency obtained by making=0 in Eq.  dynamically closed system. The nonlinear coupling to the
(11). For a sufficiently small value of, the presence of the phonons gives a self-sustained character to the reduced os-
deterministicterm hardly introduces any relevant change: itcillator, whereas the dissipation to the thermal bath results in
is only in a very small region near the origin that the dynam-a nontrivial v# 1. Second, the threshold character is linked
ics is altered. Therefore, for smdl] we can consider that the to the limited efficiency of the environment to sustain oscil-
laminar phase includes this region, and consequently we cdations in the relaxation process. Third, as the signatures are

still describe the switching as intermittent behavior. determined by the linear termboth deterministic and sto-
chastig present in the equation for the amplitude, the role
V. CONCLUDING REMARKS played by the functional form o¥(q) in the appearance of

_ ) ) the phenomenon is crucial. The possible relevance of the
In conclusion, we have found that on-off intermittency model in different contexts is supported by the frequent pres-

can appear in a complex system coupled to a thermal resegnce in real physical problems of effective nonlinear cou-
voir as a result of the existence of a nonequilibrium state ofjings and perturbations to thermal states.

“hidden modes” nonlinearly coupled to the mode observed.
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